If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+3t-14=0
a = 4.9; b = 3; c = -14;
Δ = b2-4ac
Δ = 32-4·4.9·(-14)
Δ = 283.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{283.4}}{2*4.9}=\frac{-3-\sqrt{283.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{283.4}}{2*4.9}=\frac{-3+\sqrt{283.4}}{9.8} $
| 22/3x=600 | | 7x-10=9x+15 | | 4x-3=3x=7 | | 0.79+0.31t=1.57t-0.05 | | 8/6x=600 | | 5n+4+18=10 | | 0.75x=18 | | 4.5q-2.6-4.2q=-0.7q-2.6 | | 9s×4=144 | | 450=135+2w | | 2/3t-18=6 | | x+3(x-1)=6-4(2x+3)= | | 7/2x−57−3=12 | | 4x=9-1/4x | | 5x-9=(-2x)+5 | | 4x-10=-2x+4 | | -21=4h-5 | | 8x^2+10x-7x=0 | | 100=10d+20 | | G(x)=-3x-1 | | y/4+5=-8 | | 3(-m-4)= | | 5/6+2x=2/3-3x | | (2(v^2))-(2v)=0 | | n^2-10n+50=8n-16 | | 28=6-9n | | 50=10d+20 | | 28=6–9n | | 19-6x=-59 | | x+100-4x=180 | | X-9x+2=0 | | -5(1-5x)+-5(8x-2)=-4x-8x |